
Applications of Model Reuse
When Using Estimation of

Distribution Algorithms to Test
Concurrent Software

Jan Staunton and John Clark

University of York, SEBASE EPSRC project

SSBSE 2011, 11th of September 2011

Sunday, 11 September 11

Presentation Outline

• Learning Strategies

• Potential Reuse Scenarios

• Experimentation

• Summary

Sunday, 11 September 11

Learning Strategies

Sunday, 11 September 11

Our Problem

(T, T)

(L, T) (T, L)

(LR, T) (L, L) (T, LR)

Pickup Left Fork

Pickup Left Fork

Pickup Right Fork
Pickup Right Fork

Pickup Left Fork

Pickup Left Fork

Initial State

Error State

Counterexample/Path

Put down both forks

Put down both forks

Fig. 1. Figure of a Dining Philosopher transition system/state space visualised as a
digraph. States are shown as circles, with edges between them labelled with actions on
the left. The path highlighted is a counterexample that leads to a deadlock state.

Metaheuristic mechanisms have been shown to be promising when used to de-
tect faults in concurrent software/systems. Genetic Algorithms have been shown
to be e↵ective at detecting deadlock in Java programs [3]. Ant Colony Optimisa-
tion has also been shown to be e↵ective at detecting a variety of di↵erent errors
types, including deadlock and LTL formulae violations [1, 2], in Promela models.
Recently, we have shown how an EDA-based model checking algorithm based
upon N-gram GP can be used to discover short errors in concurrent systems [11,
12]. Using this work, we show how the algorithm described in [11, 12] can be
modified to allow for information in previous runs to save computational e↵ort
in later runs. Our system is implemented using ECJ [7] and HSF-SPIN [5]. HSF-
SPIN is a model checking framework that analyses Promela specifications, and
implements a variety of heuristics for checking a range of properties.

Sunday, 11 September 11

Initialise
Population

Evaluate
and Select

Terminate
and output

Not finished?

Estimation of Distribution Algorithm

Build Model

Sample Model

Sunday, 11 September 11

Our method

• Based upon an EDA called N-gram GP*

• Solution space is strings of actions that constitute paths in
state space

• Paths start in the initial state, end in goal state, terminal state
or previously encountered state

• Paths are sampled, and the best are used to build strategy.
Strategy is then used to sample a new set of solutions from
which the next strategy is constructed

• Strategy answers the following question...
* R. Poli and N.F. McPhee. A linear estimation-of-distribution GP system. Lecture Notes in Computer Science, 4971:206–
217, 2008.

Sunday, 11 September 11

We construct a path p that starts in the initial state. Given
the n most recent actions that have occurred on p

currently under construction, by what distribution should
the next action be selected?

Sunday, 11 September 11

Example

(T, T)

(L, T) (T, L)

(LR, T) (L, L) (T, LR)

Pickup Left Fork

Pickup Left Fork

Pickup Right Fork
Pickup Right Fork

Pickup Left Fork

Pickup Left Fork

Initial State

Error State

Counterexample/Path

Put down both forks

Put down both forks

Fig. 1. Figure of a Dining Philosopher transition system/state space visualised as a
digraph. States are shown as circles, with edges between them labelled with actions on
the left. The path highlighted is a counterexample that leads to a deadlock state.

Metaheuristic mechanisms have been shown to be promising when used to de-
tect faults in concurrent software/systems. Genetic Algorithms have been shown
to be e↵ective at detecting deadlock in Java programs [3]. Ant Colony Optimisa-
tion has also been shown to be e↵ective at detecting a variety of di↵erent errors
types, including deadlock and LTL formulae violations [1, 2], in Promela models.
Recently, we have shown how an EDA-based model checking algorithm based
upon N-gram GP can be used to discover short errors in concurrent systems [11,
12]. Using this work, we show how the algorithm described in [11, 12] can be
modified to allow for information in previous runs to save computational e↵ort
in later runs. Our system is implemented using ECJ [7] and HSF-SPIN [5]. HSF-
SPIN is a model checking framework that analyses Promela specifications, and
implements a variety of heuristics for checking a range of properties.

Sunday, 11 September 11

Strategies vs solutions

• Other mechanisms find sets of solutions
only (search trajectory can reveal some
insight)

• Our method learns a strategy for exploring
the state space

• Solutions only have little scope for reuse,
whereas our strategy can be used again in
future runs (potentially on changed systems)

Sunday, 11 September 11

Reuse Scenarios

Sunday, 11 September 11

Model Reuse

• Often touted advantage of EDAs is making
use of models either through analysis or
reuse

• Because our EDA models action
sequences, strategy can be generic over
varying systems

• We are interested in reducing effort at
certain stages in the development life cycle

Sunday, 11 September 11

Run the EDA

Reuse workflow

Export some
model/strategy

information

Use
information in

new run

Sunday, 11 September 11

Scenario: Debugging

• Use our EDA to find a concurrent fault b, found by strategy
s

• “fix” the bug b, creating a new revision of the system

• Use s that found b to search revised system

• s may focus the search on multiple areas of the state
space, at the very least will very likely lead to the now
“fixed” area of the search space for a subsequent check.
Can also tabu the strategy...

Sunday, 11 September 11

Scenario: Refinement

• Running the EDA on a system without errors can yield a
strategy that highlights areas of the state space that “peak
the interest” of the heuristic being used

• If the system is later refined (potentially with the changes
between the previous and refined version of the system
are linked/related) then strategies learned on the previous
system could be used on the refined system

Sunday, 11 September 11

Scenario: Problem
Families

• Some systems can be scaled to yield bigger state spaces
(e.g. systems with more clients and servers)

• Assuming you can find an error with the EDA, one can use
the strategy learned to find the same error in varying sizes
of the same system

• Extra information about the same error can help a
programmer to more effectively fix the bug

• Assumption is that a strategy that detects errors in a small
model can be used to find errors in larger systems with the
same description

Sunday, 11 September 11

Experimentation

Sunday, 11 September 11

Experimentation
• Tested the problem families scenario

• Implemented technique using HSF-SPIN
and the ECJ toolkit

• Systems under test are PROMELA
specifications

• Tested three systems, with deadlock, an
assertion error and a liveness property
violation

Sunday, 11 September 11

Method
• Run the EDA on a “small” instance of the system and save the

strategy from the last generation (terminate after certain of
states)

• Use this strategy to seed the first generation of a run on a
large system

• Strategy is destroyed and rebuilt at each generation, in both
runs

• Looking for effort reduction from the combined small and large
run

• Compared against running the EDA without the seed

Sunday, 11 September 11

Test cases

• Dining Philosophers (no loop, eat and die, deadlock)

• Small 32, Large 128

• Leader election system (assertion error)

• Small 2, Large 10

• CORBA Global Inter-op Protocol (GIOP) (liveness
issue)

• Small 2, Large 20

Sunday, 11 September 11

Small instances

Applications of Model Reuse When Using Estimation of Distribution 107

30 individuals from the current population are used to build the EDA/N-gram
model. All individuals in the population are replaced at each generation with
individuals sampled from the model. The algorithm terminates once it reaches
200 generations, allowing for the potential optimisation of counterexamples. Ini-
tially, the model is a blank model meaning that all the paths evaluated during
the first generation are completely random.

4.4 Smaller Instances

In order to learn strategies that can be used on any instance of a particular
problem family, we ran the EDA algorithm on a small instance of each problem
family. For the Dining Philosophers problem family, a small instance is a system
with 32 philosophers. For the Leader model, we use a unidirectional ring with
3 members. And finally, for the GIOP model, we use a single server 2 client
configuration. For each model, we allow the algorithm to run for a fixed number
of generations, allowing execution to continue if an error is found in order to
optimise the model and find shorter counterexamples. The model constructed
from the final generation of a single execution is the model used in the subsequent
executions on the larger instances. The model is simply serialised out to a file
to be used as input to a future run. At this stage, there is the possibility of
inspecting the model in order to make improvements. In this work however, the
model is used verbatim in the execution on the larger model. Models from various
runs can potentially be archived for use in future work. Some measurements from
these initial runs can be found in Table 2. We have proven empirically in earlier
papers [11,12] that the EDA is capable of consistently finding good strategies in
the time scales shown in Table 2. The numbers below the First Error header are
numbers relating to the first error found during the execution. The best error
table shows the numbers related to the shortest error found.

Table 2. Measurements from the initial runs

Measurement Dining Philosophers Leader GIOP
First error:

Generations 3 0 0
Path Length 34 35 59

States 73,058 35 729
Time 27.45s 0.3s 0.3s

Best error:
Generations 3 0 17
Path Length 34 32 21

States 73,058 2,080 80,478
Time 27.45s 0.63s 3m8s

Total for run:
Generations 50 200 200

States 1,150,400 1,040,495 931,691
Time 13m30s 19m47s 37m33s

Sunday, 11 September 11

Dining Philosophers
(128)

108 J. Staunton and J.A. Clark

4.5 Larger Instances

The larger instances of the problem families consist of the following. For the
Dining Philosopher problem family, we used a 128 philosopher system. For the
Leader system, we used a unidirectional ring with 10 voters. Unfortunately it
is not possible to scale this model further due to implementation limitations
on the part of the system, not the EDA. And finally, for the GIOP system, an
instance with a single server and 20 clients is used. The sizes of both the Dining
Philosopher system and the GIOP system were chosen due to the availability of
measurements on those systems without model reuse. We are confident that the
technique will scale beyond these numbers, but due to time contraints we could
not explore larger instances.

The statistics shown in Tables 3, 4 and 5 are taken from 100 executions on
the Dining Philosopher, Leader and GIOP systems respectively. Each of the
100 runs used the single model constructed in the initial run stage described in
Section 4.4. Any statistics in the “n/m” format are stating the “median/mean”.
In order to compare total amounts of computation, the “With Model Reuse”
column in the tables includes the computation up to the best error found in the
initial runs. We argue that this is a fair definition of the computation involved in
building a model initially because practitioners are likely to limit the number of
generations to find a good enough error, especially if the EDA-based technique
is used regularly during a development life cycle. The “Without Initial Run”
column shows the numbers of the reuse run only, without the computation of
the strategy on the smaller instance. Statistical comparisons with the results
obtained without model reuse are indicated with plus (significant difference)
and minus (insignificant difference) symbols. In order to compare the model
reuse runs against the non-reuse runs, we use the Wilcoxon rank-sum test with
a significance level of α = 0.05.

Table 3. Measurements from the model reuse runs on the Dining Philosophers 128
system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

Best error:
Generations 19/19.4(+) 3/3 0/0
Path Length 130/130(-) 130/130 130/130

States 1,831,394/1,898,568.21(+) 73,831/74,281.1 773/1,223.1
Time 47m24s/1h14m32s(+) 29.572s/30.057s 2.122s/2.606s

The results in Table 3 show statistics for the Dining Philosopher problem
family. In the Dining Philosopher system, there is a single error. The error can
be reached in multiple ways but is always at the same depth/path length. This
explains the similarity between the first and best results. From the numbers
achieved, it is clear that model reuse can have a huge impact on the amount of
computational effort required to find errors in the larger instance. The mean time

99% reduction in effort

Sunday, 11 September 11

Leader (10)Applications of Model Reuse When Using Estimation of Distribution 109

Table 4. Measurements from the model reuse runs on the Leader 10 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0(-) 0/0 0/0
Path Length 84/82.75(+) 71/71.21 71/71.21

States 84/82.75(+) 2,151/2,151.21 71/71.21
Time 0.239s/0.622s(+) 1.127s/1.606s 0.497s/0.976s

Best error:
Generations 17/20.26(-) 15/19.23 15/19.23
Path Length 36/35.45(-) 36/35.47 36/35.47

States 193,616/225,050.01(-) 163,429/209,150.82 161,349/207,070.82
Time 22m51s/25m57s(+) 4m7s/5m19s 4m6s/5m18s

Table 5. Measurements from the model reuse runs on the GIOP 20 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0.01(+) 17/17 0/0
Path Length 132/150.09(+) 61/73.37 61/73.37

States 40,421/60,681.01(+) 90,773/98,194.14 10,295/17,716.14
Time 1m26s/2m1s(+) 3m28s/3m46s 19.56s/38.017s

Best error:
Generations 30/28.71(+) 20/28.21 3/11.21
Path Length 31/31.21+) 26/25.6 26/25.6

States 13,068,139/12,337,306(+) 1,495,644/4,942,260.07 1,415,166/4,861,782.07
Time 6h47m16s/8h13m24s(+) 57m34s/3h12m14s 54m26s/3h9m6s

to discover an error is reduced by over 99%. This means that rather than wait an
hour for additional information regarding the error, information can be obtained
in a mere 30 seconds, potentially reducing time spent in the debugging cycle
substantially in this case. We expected a large gain on the Dining Philosopher
family as it is a symmetrical problem. The strategy to finding an error in the
Dining Philosopher is trivial, “Always choose the action that is Pickup the Left
Fork”.

The results in Table 4 show statistics for the Leader election problem family.
In this problem family, the results are less impressive than that of the Dining
Philosopher family. We attribute this to the fact that the EDA can find a short
counterexample with little computation, often in the first generation before any
strategy building has taken place. This suggests that the model is trivial and
does not require mechanisms to reduce computational effort. However, we still
obtain a significant speed increase in terms of time spent searching the transition
system. We attribute this to the EDA exploring a narrower area of the state space
on the larger instance due to the initial strategy constructed from the smaller
instance. This may avoid expanding useless parts of the search space, resulting
in a reduction in CPU and memory usage.

The most impressive results are listed in Table 5 for the GIOP problem family.
We expected poorer results on this model due to the description of the system
being asymmetric. However, not only is a 62% reduction of mean time in finding
a best error achieved (86% reduction in the median time), the quality of the
solutions discovered are also improved. The improvement in the path length of
the solutions found allow a practitioner to instantly assess the properties of the
error. In this instance, the paths are of a similar length meaning it is highly

75+% reduction in effort

Sunday, 11 September 11

CORBA GIOP (20)

Applications of Model Reuse When Using Estimation of Distribution 109

Table 4. Measurements from the model reuse runs on the Leader 10 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0(-) 0/0 0/0
Path Length 84/82.75(+) 71/71.21 71/71.21

States 84/82.75(+) 2,151/2,151.21 71/71.21
Time 0.239s/0.622s(+) 1.127s/1.606s 0.497s/0.976s

Best error:
Generations 17/20.26(-) 15/19.23 15/19.23
Path Length 36/35.45(-) 36/35.47 36/35.47

States 193,616/225,050.01(-) 163,429/209,150.82 161,349/207,070.82
Time 22m51s/25m57s(+) 4m7s/5m19s 4m6s/5m18s

Table 5. Measurements from the model reuse runs on the GIOP 20 system

Measurement Without Model Reuse With Model Reuse Without Initial Run
First error:

Generations 0/0.01(+) 17/17 0/0
Path Length 132/150.09(+) 61/73.37 61/73.37

States 40,421/60,681.01(+) 90,773/98,194.14 10,295/17,716.14
Time 1m26s/2m1s(+) 3m28s/3m46s 19.56s/38.017s

Best error:
Generations 30/28.71(+) 20/28.21 3/11.21
Path Length 31/31.21+) 26/25.6 26/25.6

States 13,068,139/12,337,306(+) 1,495,644/4,942,260.07 1,415,166/4,861,782.07
Time 6h47m16s/8h13m24s(+) 57m34s/3h12m14s 54m26s/3h9m6s

to discover an error is reduced by over 99%. This means that rather than wait an
hour for additional information regarding the error, information can be obtained
in a mere 30 seconds, potentially reducing time spent in the debugging cycle
substantially in this case. We expected a large gain on the Dining Philosopher
family as it is a symmetrical problem. The strategy to finding an error in the
Dining Philosopher is trivial, “Always choose the action that is Pickup the Left
Fork”.

The results in Table 4 show statistics for the Leader election problem family.
In this problem family, the results are less impressive than that of the Dining
Philosopher family. We attribute this to the fact that the EDA can find a short
counterexample with little computation, often in the first generation before any
strategy building has taken place. This suggests that the model is trivial and
does not require mechanisms to reduce computational effort. However, we still
obtain a significant speed increase in terms of time spent searching the transition
system. We attribute this to the EDA exploring a narrower area of the state space
on the larger instance due to the initial strategy constructed from the smaller
instance. This may avoid expanding useless parts of the search space, resulting
in a reduction in CPU and memory usage.

The most impressive results are listed in Table 5 for the GIOP problem family.
We expected poorer results on this model due to the description of the system
being asymmetric. However, not only is a 62% reduction of mean time in finding
a best error achieved (86% reduction in the median time), the quality of the
solutions discovered are also improved. The improvement in the path length of
the solutions found allow a practitioner to instantly assess the properties of the
error. In this instance, the paths are of a similar length meaning it is highly

68% reduction in mean effort, higher quality results

Sunday, 11 September 11

Discussion

• Two errors of different sizes, and the EDA has
optimised both errors (shorter paths to error are
better)

• One can instantly learn about the error from the path
lengths

• This process can be fully automated

• Effort saved allows for overnight runs as opposed to
week-long runs on large systems

Sunday, 11 September 11

Summary

Sunday, 11 September 11

Summary

• Outlined methods of reusing strategy information
between runs of an EDA

• Novel approach, something perhaps unique to EDAs

• Proven that it has the potential to reduce the effort
required to gain extra information about errors in
problem families

• Model/strategy reuse meme has the potential to be
useful elsewhere

Sunday, 11 September 11

Thanks!

Any questions?

Sunday, 11 September 11

Sunday, 11 September 11

